当前位置: 首页 » 资讯头条 » 产业终端 » 锂电 » 正文

大连化物所揭示全钒液流电池正极电解液稳定化机理

放大字体  缩小字体 中国科学院大连化物所    编辑部  2025-05-26

近日,大连化物所储能技术研究部(DNL17)李先锋研究员团队和中国科学院化学研究所张燕燕副研究员合作,在全钒液流电池(VFBs)正极电解液稳定性研究方面取得新进展。团队通过系统研究VFB正极电解液中五价钒离子的溶剂化结构随温度的转化过程,阐明了正极电解液沉淀析出机理,并据此提出了高稳定性钒电解液设计策略。

VFBs具有安全性高、效率高、寿命长等优势,在大规模电力系统储能领域具有广阔的应用前景。电解质溶液作为储能介质,其浓度和稳定性决定了电池系统的稳定性和能量密度。目前,正极电解液中五价钒 [V(V)] 在高温(> 45 °C)环境下易转化为五氧化二钒(V2O5)沉淀,影响了系统的可靠性,并对电池的热管理提出了很高的要求。

针对这一关键科学问题,研究团队结合从头算分子动力学(AIMD)模拟与原位液体飞行时间二次离子质谱(in situ liquid ToF-SIMS)表征技术,系统解析了V(V) 溶剂化结构从[VO2(H2O)3]+到 VO(OH)3的完整转化过程。

研究发现,水合V(V)离子([VO2(H2O)3]+)在高温和高浓度下会经脱水、去质子和质子转移过程,最终形成沉淀前驱体的偏钒酸(VO(OH)3)。第二次脱质子反应能垒最高,是反应的速率决定步骤。相比之下,硫酸根配位的V(V) 离子可有效抑制水分子的极化及后续去质子化过程,从而在高温环境下表现出优异的稳定性。基于上述机理,团队开发出混合酸钒电解液(2 MV),在50°C条件下实现单电池稳定运行3,000次以上。本研究不仅揭示了V(V) 溶剂化结构的转化机理,同时为提高电解液的稳定性,以及进一步提升VFB系统的可靠性和能量密度具有重要的指导意义。

上述成果以“Harnessing Solvation Chemistry of Pentavalent Vanadium for Wide-temperature Range Vanadium Flow Batteries”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是我所DNL17博士研究生穆晨凯。上述工作得到国家重点研发计划、国家自然科学基金、辽宁滨海实验室、中国科学院A类先导专项“基于高比例可再生能源的储能关键技术与示范”等项目的支持。


本文为中国科学院大连化物所原创 作者:编辑部,转载请联系出处。
 
版权说明:本文已注明来源和作者,且版权均归原作者所有,文章仅供参考学习使用,文中出现的商标、图像版权属于原合法持有人,仅限非商业用途使用(本文涉及的任何内容都不作为或视为投资建议)。91金属网原创信息未经授权,任何网站、个人不得以任何形式传播、发布、复制(包括但不限于价格行情、市场报价等)。如本文涉及版权等问题,请与91金属客服联系QQ:2272797343删除处理!
免责声明:文章内容仅代表原作者个人观点,不代表91金属立场;91金属网站系信息展示平台,仅提供文章信息存储空间服务。91金属对本文全部或部分内容、文字、图片的准确性、真实性、完整性、有效性、及时性、原创性等不作任何保证或承诺,请自行核实相关内容,因此所引起的后果与91金属无关。 图片声明:如本站原创文章内容使用了您的图片,请作者3周内与本站联系索取稿酬。
 
  • 商务合作商务合作
  • 微信公众号会议&展会